GROUPS WITH S₂-SUBGROUPS **AND Sv-SUBGROUPS ***

BY

ZVI ARAD

ABSTRACT

In this paper we formulate criteria for the solvability of groups of type E_2 , and E_3 ,

1. Introduction

All groups considered here are finite. Philip Hall's characterization of solvable groups asserts that the existence of G_p in a finite group G for all p implies that G is solvable.

Generally the existence of $G_{p'}$ in a finite group G for every $p \in \pi(G) - \{r\}$, where $r \in \pi(G)$ is prime, does not imply that G is solvable. For example, $G = \text{PSL}(2, 7) \times G_{p_1} \times \cdots \times G_{p_k}$, where $\pi(G) = \{2, 3, 7, p_1, \dots, p_k\}$, satisfies $E_{p'}$ for every $p \in \pi(G) - \{3\}$, but G is not solvable. However, we conjecture that the existence of $G_{2'}$ and $G_{3'}$ in a group G forces G to be solvable. We cannot prove this conjecture, but we can state the following theorem.

THEOREM 1. Let G satisfy E_2 , and E_3 . Assume also that G satisfies $E_{\{2,3\}}$. *Then G is solvable.*

[4, Th. 18.7] implies that the above-mentioned Hall theorem is derived from Theorem 1.

Define *d(G)* to be the maximum of the orders of the abelian subgroups of G. Let us denote the class of all groups satisfying E_2 , and E_3 , by θ .

THEOREM 2. Let $G \in \theta$ be of order $|G| = 2^m 3^n p_1^{e_1} \cdots p_k^{e_k}$, where $\pi(G) =$ $\{2, 3, p_1, \cdots, p_k\}$. Assume that G satisfies one of the following:

^{*} The results of this paper are part of the author's doctoral research at Tel Aviv University. Received July 29, 1973 and in revised form November 5, 1973

- (i) $d(G_3) < \prod_{p \in \pi} |G_p|$, where $\pi = \{p_i/p_i > n\}$.
- (ii) $d(G_3) < d(G_{p_i})$ for some *i*.
- (iii) $|G_3| < |G_{p_i}|$ for some i.

Then G is not a nonabelian simple group.

COROLLARY 3. Let $G \in \theta$ and $|G| = 2^m 3^n p_1^{e_1} \cdots p_k^{e_k}$. If $|\pi(G)| \geq n$, then G is *not a nonabelian simple 9roup.*

We need the following theorem on solvable groups.

THEOREM 4. Let G be a solvable group of order $|G| = p_1^{e_1} \cdots p_k^{e_k}$. Define $\pi = \{p_i/p_i > e_1, i \neq 1\}$. *Then* $p_i^{ei} < |G_{\pi}|$ *implies that* $O_{p'_i}(G) \neq 1$. *In particular, if* $|G| = q^{\beta} p^{\alpha}, q^{\beta} < p^{\alpha}$ and $p > \beta$ then $O_p(G) \neq 1$.

NOTE. Burnside [3] proved that $O_p(G) \neq 1$ if q and p are odd even for $p \leq \beta$. As a corollary of Theorem 4 we obtain the following.

COROLLARY 5. Let $G \in \theta$ and $|G| = 2^m 3^n p_1^{e_1} \cdots p_k^{e_k}$. If $|\pi(G)| \geq m$, then G is *not a nonabelian simple group.*

All groups in this paper are assumed to be finite. Our notation is standard and taken mainly from [7]. In particular, $\pi(G)$ will denote the set of primes dividing $|G|$. The set of primes not in π , will be denoted by π' .

In accordance with Hall, we consider the following statements about a group G. E_{π} : G has an S_{π} -subgroup.

 C_{π} : G has an S_{π} -subgroup and any two such subgroups are conjugate.

 D_{π} : G satisfies C_{π} and every π -subgroup of G is contained in an S_{π} -subgroup. Finally, if G satisfies E_{π} , then G_{π} will denote an S_{π} -subgroup of G.

2. Preliminary results

The proof of Theorem 1 depends upon the following lemma.

LEMMA 6. If $G \in \theta$ then:

(i) if $2 \times |G|$ or $3 \times |G|$ then G is solvable.

(ii) *if* $2,3/|G|$ then G_2 , and G_3 , are solvable.

PROOF. (i) If $2 \chi |G|$ then G is solvable by [6]. If $3 \chi |G|$ let G be a minimal counterexample. If N is a proper nontrivial normal subgroup of G , then by induction N is solvable. Similarly $G|N$ is also solvable. Therefore G is solvable, a contradiction. We conclude that G is simple, and assuming Thompson's

classification of simple 3'-groups we find that G is isomorphic to $S_z(q)$. But $S_z(q)$ does not have G_2 , a contradiction. Hence G is solvable.

(ii) G_2 , is solvable by [6]. G_3 , is a θ -group by [4, Th. 18.6], and hence it is solvable by (i).

We need also the next lemma.

LEMMA 7. If $G \in \theta$ is a simple group, $K = G_{3'}$ or $K = G_{\{2,p\}}$ a prime, and $R = G_2$ or $R = G_{\{3,a\}}$, q a prime, then $O_2(K) = O_3(R) = 1$.

PROOF. Assume that G is a nonabelian simple group. Lemma $6(i)$ implies that G_2 and G_3 are solvable. Let K be G_3 . If $O_2(K) \neq 1$ then there exists a prime $p \neq 2, 3$ such that $O_p(K) \neq 1$. Clearly $O_p(K) \subseteq G_2^*$ for some x in G. Since G_2^* . has the same properties as G_2 , we can replace G_2 , by G_2^* , and so can assume without loss that G_2 contains $O_p(K)$. Now by [7, Lem. 6.4.2], we have $G = G_2$.K. Hence if $g \in G$, then $g = k \cdot r$ where $k \in K$ and $r \in G_2$. Therefore $O_n(K)^g = O_n(K)^r \subseteq G_{2'}$. But then $1 \subset O_n(K) \subseteq \bigcap_{g \in G} G_2^g$. $\lnot G$. Hence G is not simple, a contradiction. Therefore $O_2(K) = 1$.

Similarly $O_3(G_2) = 1$. If $K = G_{(2,p)}$ or $R = G_{(3,p)}$ we use the same method.

LEMMA 8. Let K be a finite subgroup of $GL(n, \overline{GF(t)})$, where t is a prime. *Assume that* $(| K |, t) = 1$ *and if* $p \in \pi(K)$ *then* $p > n$. *Then* K *is abelian.*

PROOF. We prove this by induction on n. If $n = 1$ then K is a cyclic subgroup. By assumption char $\overline{GF(t)}$ \nmid $|K|$, hence K is completely reducible. Suppose that K is reducible $K = \begin{pmatrix} 1 & 0 \\ 0 & K_2 \end{pmatrix}$.

By induction, K_i (where $i = 1$ or 2) is an abelian subgroup of K, as $|K| = |K_1| \cdot |K_2|$. Hence K is abelian. It remains to deal with the case where K is an irreducible $\overline{GF(t)}$ -representation. [12, Th. 15.11 and Th. 15.10] now imply that $n/|K|$. But by assumption $n / |K|$, a contradiction. Therefore K is abelian.

As an immediate corollary of Lemma 8 we have Lemma 9.

LEMMA 9. Let K be a subgroup of $GL(n, 3)$, $n \ge 3$, such that if $p \in \pi(K)$ *then* $p > n$. Then K is abelian.

LEMMA 10. Let $G = G_{\pi}G_{\pi'}$. Assume that $G_{\pi} \neq 1$ is abelian and that $|G_{\pi}|>|G_{\pi'}|$. *Then* $O_{\pi}(G) \neq 1$.

PROOF. By assumption $G_{\pi} \cap G_{\pi}^x \neq 1$ for all $x \in G$. Since G_{π} is abelian, Herzog in [9, Th. 1] implies that there exists $x \in G$ such that $O_{\pi}(G) = G_{\pi} \cap G_{\pi}^* \neq 1$. As an immediate corollary of Lemma 10 we obtain Lemma 11.

LEMMA 11. *If* K is an abelian subgroup of $GL(n,q)$, and if $(|K|, q) = 1$, *then* $|K| < q^n$.

PROOF. Let R be the group of order q^n such that $K \subset \text{Aut}(R)$. Embed K and R in the natural manner in their semi-direct product KR . Clearly $R \leq KR$. If $|K| > q^n$ then Lemma 10 implies that there exists a nontrivial element $k \in K$ such that $k \in O_{\pi(K)}(KR)$. Hence $k \in C_{KR}(R)$, a contradiction. Therefore $|K| < q^n$.

We conclude with the trivial lemma.

LEMMA 12. Let G be of order $|G| = 2^m 3^n p_1^{e_1} \cdots p_k^{e_k}$. Define $\pi_m = \{p_i | p_i > m\}$ *and* $\pi_n = \{p_i/p_i > n\}$. *Assume that* (i) $k \geq n-2$ *and* $n \geq 6$ *or* (ii) $k \geq m-2$ *and* $m \geq 4$. Then $|G_{n_n}| > 3^n$ or $G_{n_m}| > 2^m$, respectively.

The proof is by induction on n and m .

3. Some properties of groups belonging to θ

For any group G let $m(G)$ denote the minimal number of generators of G. Define $m_s(G) = \max m(U)$ where U ranges over all the subgroups of G. Define $m_A(G) = \max m(A)$ where A ranges over all the abelian normal subgroups of G. If P is a p-group, $m_s(P) \leq n$, and K is a p'-subgroup of Aut(P), it is known that $K \subset GL(n,p)$.

We need the following preliminary result.

PROPOSITION 13. Let $G \in \theta$ be a simple group. Set $m_2 = m(O_2(G_3))$ and set $m_3 = m(O_3(G_2))$. Assume that $p = 2$ or 3 and that

$$
(|G|, p^{s}(p^{m_p}-1)(p^{m_p-1}-1)\cdots (p-1)) = 2^{s_1}3^{r_2}
$$

where s, α *,* β *and* γ *are non negative integers and r is a prime. If r = 5,7,13 or* 17, *assume also that G, is cyclic. Then C is simple of prime order.*

PROOF. Assume that G is a nonabelian simple group. Lemma 7 implies then that $O_2(G_3) = O_3(G_3) = 1$.

Since $G_{2'}$ and $G_{3'}$ are solvable (Lemma 6), Hall-Higman [Lem. 1.2.3] implies that $C_{G_3}(O_2(G_3)) = Z(O_2(G_3))$ and that $C_{G_2}(O_3(G_2)) = Z(O_3(G_2))$. Set $N = N_{G_3}/(O_2(G_3))$ and set $C = C_{G_3}/(O_2(G_3))$. Then $N/C = G_3/(Z(O_2(G_3)))$ is isomorphic to a subgroup of Aut($O_2(G_3)$). [13, Th. 7.3.11] implies that $|N/C|/|\text{Aut}(O_2(G_3))|/2^k \prod_{0 \le j \le m_2-1} (2^{m_2-j} - 1)$, where k is an integer. By assumption $|N| = |G_{3'}| = 2^{a}r^{\gamma}$. Therefore $|G| = 2^{a}3^{b}r^{\gamma}$. Burnside's $p^{\alpha}q^{\beta}$ theorem yields that $\alpha, \beta, \gamma > 1$. Thompson's theorem on minimal simple groups implies that r must be either 5, 7, 13 or 17. Hence, by assumption, G, is cyclic. From Leon's theorem [11] and the recent results of Leon and Wales we obtain that G is one of the following: $L_2(q)$ with $q = 5, 7, 8, 9$ or 17, $L_3(3)$, $U_4(2)$ or $U_3(3)$. In every case G does not have both G_2 , and G_3 , a contradiction. Therefore G is simple of prime order. The second part of this proposition for $p = 3$, is proved similarly.

PROPOSITION 14. Let $G \in \theta$ satisfy one of the following:

- (i) G_2 , is 3-nilpotent.
- (ii) G_3 , is 2-nilpotent.
- (iii) G_2 *is abelian.*
- *Then G is solvable.*

PROOF. Let G be a minimal counterexample. (i) Let N be a proper nontrivial normal subgroup of G. Then by induction N and *G/N* are solvable, a contradiction. Hence G is simple. Lemma 7 then implies that $O_{3}(G_{2}) = 1$. As G_{2} , is 3-nilpotent, G_2 , is a 3-group and G is solvable by Burnside's theorem, a contradiction. (ii) The proof of this part is similar. (iii) Clearly, by induction, G is simple. By Walter's theorem [14], [15], and [16] we obtain that $G \notin \theta$, a contradiction. Therefore G is solvable.

PROPOSITION 15. Let $G \in \theta$ satisfy one of the following:

- (i) $m_s(G_2) \leq 4$.
- (ii) *m*_i $(G_3) \leq 4$.
- (iii) $m_A(G_3) \leq 2$.

Then G is solvable.

In particular if $|G_2| \leq 2^5$ *or* $|G_3| \leq 3^4$ *and* $G \in \theta$ *, then G is solvable.*

PROOF. Let G be a minimal counterexample.

(i) By induction G is a non-abelian simple group. From Lemma 7 and Hall-Higman [Lem. 1.2.3] we obtain:

$$
\left|N_{G_3}(O_2(G_3\cdot))/C_{G_3}(O_2(G_3\cdot))\right| = \left|G_3\cdot\left|Z(O_2(G_3\cdot))\right|2^k\right|GL(4,2)
$$

for some k . Therefore one of the following holds:

- (1) $|G_{3'}| = 1$.
- (2) $| G_{3'} | = 2^{\alpha}$.
- (3) $|G_3| = 2^{\alpha} \cdot 7.$
- (4) $|G_{3'}| = 2^{\alpha} \cdot 5$,
- (5) $|G_{3'}| = 2^{\alpha} \cdot 5 \cdot 7$.

Clearly $\alpha > 2$, by Proposition 14 (iii). By Proposition 13 we have only case (5). Since $G_{3'}$ is solvable, G has an $S_{\{5,7\}}$ -subgroup $G_{\{5,7\}}$. Since

$$
G_{\{5,7\}}Z(O_2(G_3))/Z(O_2(G_3)) \subseteq \text{Aut}(O_2(G_3))
$$

we obtain that $G_{(5,7)} \subseteq GL(4, 2)$. But Satz [27, (7.3), Chap. II] implies that $GL(4, 2)$ does not contain subgroups of order 5,7, a contradiction, and (i) is proved.

(ii) By induction, G is simple, and $m_s(G_3) \leq 4$. In particular $m = m(O_3(G_2))$ \leq 4. As in the proof of (i), it follows that $G_2/Z(O_3(G_2))$ is isomorphic to a subgroup of Aut($O_3(G_2)$) and its order divides $3^k | GL(m, 3)|$ for some k. Therefore one of the following holds:

- $|G_{2'}| = 1$.
- (2) $|G_{2'}| = 3^{\alpha}$.
- (3) $|G_{2'}| = 3^{\alpha} \cdot 13$.
- (4) $|G_{2'}| = 3^{\alpha} \cdot 5$.
- (5) $|G_{2'}| = 3^{\alpha} \cdot 5 \cdot 13$.

Since G_{3} , is solvable, we obtain in Case 5 that

$$
G_{\{5,13\}}\subset C L(4,3).
$$

By Proposition 13 we have that $|G_{2'}| = 3^{\alpha} \cdot 5 \cdot 13$. But Satz [10, (7.3), Chap. II] implies that $GL(4,3)$ does not satisfy $E_{\{5,13\}}$, a contradiction. Therefore G is solvable.

(iii) If $m_A(G_3) \le 2$ then Thompson's theorem (Satz [10, (12.3), Chap. III]) implies that $m_s(G_3) \leq 3$. Therefore G is solvable by part (ii).

If $|G_2| \le 2^5$ then G_2 is abelian or $m_s(G_2) \le 4$. Proposition 15(i) and Proposition $14(iii)$ then imply that G is solvable.

4. Proofs of the theorems

PROOF OF THEOREM 1. Let G be a minimal counterexample. Lemma 6 implies that 2,3/ $|G|$. Burnside's $p^q q^b$ theorem implies that $|\pi(G)| \ge 3$. Lemma 6 implies that G_2 , and G_3 , are solvable. Burnside's $p^a q^b$ theorem implies that $G_{(2,3)}$ is solvable. Hence [7, Th. 6.4.4] implies that G is solvable.

PROOF OF THEOREM 2. (i) If G is a nonabelian simple group, then Lemma 7 implies that $O_3(G_2) = 1$. From Hall-Higman [Lem. 1.2.3] we obtain that $N_{G_2}(O_3(G_2))/C_{G_2}(O_3(G_2)) = G_2/Z(O_3(G_2)) \subseteq \text{Aut}(O_3(G_2))$. Now Lemma 9 implies that $G_x \cdot Z(O_3(G_2))/Z(O_3(G_2)) \subset GL(n, 3)$ is an abelian subgroup if $n \ge 3$ Therefore G_{π} is an abelian subgroup if $n \geq 3$. By definition, $O_2(G_2) = 1$ and G_2 ,

is of odd order. Let A be an abelian subgroup of G_2 , of maximal order. By assumption $d(G_3) < |G_{\pi}|$, therefore if $n \ge 3$ then there exists $p \in \pi$, p a prime, such that $p/|A|$ and $p \ge 5$. [1, Th. 1] then imlpies that $1 \subset O_p(A) \subseteq O_p(G_2) = 1$ a contradiction. Hence $n \leq 2$. Proposition 15 then implies that G is not a nonabelian simple group, proving (i).

(ii) Let A be an abelian subgroup of G_2 . of maximal order. By assumption $d(G_3) < d(G_n)$ for some $p > 3$. Therefore there exists $q \in \pi(G_2)$, $q \ge 5$ a prime, such that $q/|A|$. [1, Th. 1] implies that $1 \neq O_q(A) \subseteq O_q(G_2)$. But $O_q(G_2) = 1$ by Lemma 7, a contradiction, proving (ii).

(iii) Burnside's theorem [3] implies that $O_{p_i}(G_{\{3,p_i\}}) \neq 1$. Hence G is not a nonabelian simple group by Lemma 7.

PROOF OF COROLLARY 3. If $n \leq 4$ then Proposition 15 implies that G is solvable. Define $\pi_n = \{p_i/p_i > n\}$. If $n \ge 6$, Lemma 12 implies that $3^n < |G_{\pi_n}|$. Therefore $d(G_3) < |G_{\pi_n}|$. From Theorem 2(i) we obtain that G is not a nonabelian simple group. If $n = 5$ then $\pi(G) = \{2, 3, 5, 11, 13\}$ since $|G_2/Z(O_3(G_2))|/3^k |GL(5, 3)|$ and $\pi(GL(5,3)) = \{2,3,5,11,13\}$. As above $G_{\{11,13\}} \subset GL(5,3)$. But $GL(5,3)$ does not contain a {11, 13}-subgroup, completing the proof.

PROOF OF THEOREM 4. If $O_{p'}(G) = 1$, then $C_G(O_{p_1}(G)) = Z(O_{p_1}(G))$. Therefore $G/Z(O_{p_1}(G)) \subseteq \text{Aut}(O_{p_1}(G))$. In particular, $G_{\pi} \subseteq GL(e_1, p_1)$. From Lemma 8 we obtain that G_{π} is abelian. Therefore $|G_{\pi}| < p_1^{\epsilon_1}$ by Lemma 11, a contradiction. Therefore $O_{p_i}(G) \neq 1$.

PROOF OF COROLLARY 5. If $m \leq 5$ then Proposition 15 implies that G is solvable. Hence $m \ge 6$. Define $\pi_m = \{p_i/p_i > m\}$. Lemma 12 implies that $|G_{\pi_m}| > 2^m$. Lemma 6 and Theorem 4 imply that $O_3(G_2) \neq 1$. By Lemma 7, G is not a nonabelian simple group.

ACKNOWLEDGEMENT

The author wishes to express his gratitude to his thesis advisor, Professor M. Herzog, for his devoted guidance.

REFERENCES

- 1. Z. Arad and G. Glauberman, *A characteristic subgroup of a group ofoddorder* (to appear).
- 2. W. Burnside, *On groups of order p^aq^b*, Proc. London Math. Soc. 2 (1904), 388-392.
- 3. W. Burnside, *On groups of order* $p^{\alpha}q^{\beta}$, Proc. London Math. Soc. 2 (1904), 432-437.
- 4. W. Feit, *Characters of Finite Groups,* W. A. Benjamin, Inc. New York, 1967.

5. W. Feit, The *current situation in the theory of finite simple groups,* Actes Congress Intern. Math. I (1970), 55-93.

6. W. Felt and J. G. Thompson, *Solvability of groups of odd order,* Pacific J. Math. 13 (1963), 775-1029.

7. D. Gorenstein, *Finite Groups,* Harper and Row, New York, 1968.

8. P. Hall, *Theorems like @low's,* Proc. London Math. Soc. 6 (1956), 286-304.

9. M. Herzog, *Intersections ofnilpotent Hall subgroups,* Pacific J. Math. 36 (1971), 331-333.

10. B. Huppert, *Endlich Gruppen I,* Springer-Verlag, New York, 1967.

11. J. S. Leon, *On simple groups of order* $2^a 3^b 5^c$ containing a cyclic *Sylow subgroup*, J. Algebra 21 (1972), 450-457.

12. D. S. Passman, *Permutation Groups,* W. A. Benjamin Inc., N. Y., Amsterdam, 1968.

13. W. R. Scott, *Groups Theory,* Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1964.

14. J. H. Walter, *Finite groups with abelian @low 2-subgroups of order* 8, Invent. Math. (1967), 332-376.

15. J. H. Waiter, *The characterization of finite groups with abelian Sylow 2-subgroups, Ann.* **of Math. 89** (1969), 405-514.

16. H. N. Ward, *On Ree's series of simple groups,* Trans. Amer. Math. Soc. 121 (1966), 62-89.

DEPARTMENT OF MATHEMATICAL SCIENCES

TEL Avrv UNIVERSITY

TEL AVIV, ISRAEL