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ABSTRACT 

In this paper we formulate criteria for the solvability of groups of type E 2, 
and E 3, 

1. Introduction 

All groups considered here are finite. Philip Hall's characterization of  solvable 

groups asserts that the existence of Gp, in a finite group G for all p implies that 

G is solvable. 

Generally the existence of Gp, in a finite group G for every p E re(G)-  {r}, 

where r Erc(G) is prime, does not imply that G is solvable. For  example, 

G = PSL (2, 7) x Gpl x . . .  x Gp~, where ~(G) = {2, 3, 7, Pl , ' " ,  Pk}, satisfies Ep, 

for every p s 7t(G) - {3}, but G is not solvable. However, we conjecture that the 

existence of G 2, and G a, in a group G forces G to be solvable. We cannot prove 

this conjecture, but we can state the following theorem. 

THEOREM 1. Let G satisfy g 2, and E3,. Assume also that G satisfies Et2,3 ~. 

Then G is solvable. 

[4, Th. 18.7] implies that the above-mentioned Hall theorem is derived from 

Theorem 1. 

Define d(G) to be the maximum of the orders of  the abelian subgroups of G. 

Let us denote the class of  all groups satisfying E 2, and E a, by 0. 

THEOREM 2. Let G eO be of order [G[ = 2'~3nP~ ''''pkek, where lr(G) = 

{2, 3,pl, "", Pk}. Assume that G satisfies one of the following: 
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(i) 

(ii) 

(iii) 
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d(Ga) < ~-/ I G, I, where n = {pJp, > n}. 
p ~ X  

d(G3)< d(Gp,) for some i. 

IG l<l ,,Iforsomei. 
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Then G is not a nonabelian simple #roup. 

COROLLARY 3. Let GeO and Icl = 2"3"p]'...p~, k. i f  l (c)l z n, then G is 

not a nonabelian simple 9roup. 

We need the following theorem on solvable groups. 

THEOREM 4. Let G be a solvable oroup of order I GI = p~'...p~". Define 

rc = {pi/p,> el, i ~ 1}. Then p~'< ]G I implies that O,}(G) ~ 1. 

In particular, if ]G] = ql~p~,qp < p~ and p > fl then Op(G) ~ 1. 

NOTE. Burnside [3] proved that Op(G) r 1 if q and p are odd even for p < ft. 

As a corollary of Theorem 4 we obtain the following. 

COROLLARY 5. Let G eO and I GI = ~" " ,1 2 3 Pl ""P~k. I f  I rc(G) l >-- m, then G is 

not a nonabelian simple group. 

All groups in this paper are assumed to be finite. Our notation is standard 

and taken mainly from [7]. In particular, re(G) will denote the set of primes 

dividing [ G I" The set of  primes not in re, will be denoted by n'. 

In accordance with Hall, we consider the following statements about a group G. 

E~: G has an S~-suboroup. 

C,: G has an S,-sub#roup and any two such sub#roups are conju#ate. 

D~: G satisfies C~ and every rc-sub#roup of G is contained in an S,-sub#roup. 

Finally, if G satisfies E , ,  then G~ will denote an S~-subgroup of G. 

2. Preliminary results 

The proof of Theorem 1 depends upon the following lemma. 

LEMMA 6. I f  GeO then: 

(i) if 2 ,~1c l  o r  3  'IGI then G is solvable. 

(ii) if 2,3/[G1 then G2, and Ga, are solvable. 

PROOF. (i) if 2 IGI then G is solvable by [6]. If 3~ ' IG 1 let G be a minimal 

counterexample. If  N is a proper nontrivial normal subgroup of G, then by induc- 

tion N is solvable. Similarly GIN is also solvable. Therefore G is solvable, a 

contradiction. We conclude that G is simple, and assuming Thompson's 
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classification of simple 3'-groups we find that G is isomorphic to Sz(q). But 

Sz(q) does not have G2,, a contradiction. Hence G is solvable. 

(ii) G2, is solvable by [6]. Ga, is a 0-group by [4, Th. 18.6], and hence it 

is solvable by (i). 

We need also the next lemma. 

LEMMA 7. I f  G ~ 0 is a simple group, K = G a, or K = Gt2.v } a prime, and 

R = G 2, or  R = Gta,q ~, q a prime, then O2, (K  ) = Oa,(R ) = 1. 

PROOF. Assume that G is a nonabelian simple group, Lemma 6(ii) implies that 

G 2, and Ga, are solvable. Let K be Ga,. If O2,(K ) ~  1 then there exists a prime 

p ~ 2, 3 such that Or(K) ~ 1. Clearly Or(K) c_ G~, for some x in G. Since G~ 

has the same properties as G2, , we can replace G 2, by G~, and so can assume 

without loss that G 2, contains Or(K).  Now by ['7, Lem. 6.4.2], we have G = G2,K. 

Hence if g e G ,  then g = k . r  where k e K  and r eG2, .  Therefore 

O r ( K )  g = Op(K) r ~ G2, .  But then 1 c Or(K) ~_ Ng~a G~, .~ G. Hence G is not 

simple, a contradiction. Therefore O2,(K) -- 1. 

Similarly O3,(G2, ) = 1. If  K = Gc2,p } or R = Gcaol we use the same method. 

LEMMA 8. Let K be a finite subgroup of GL(n, GF(t)), where t is a prime. 

Assume that ([ K ], t) = 1 and if p ~ ~(K) then p > n. Then K is abelian. 

PROOF. We prove this by induction on n. If  n = 1 then K is a cyclic subgroup. 

By assumption char GF(t),~ [K] ,  hence K is completely reducible. Suppose 

t h a t K i s r e d u c i b l e K = ( K 1  0 ) 
K2" " 

By induction, K s (where i =  1 or 2) is an abelian subgroup of K ,  as 

IKI -- IKI I" IK~ I. Hence K is abelian. It remains to deal with the case where 

K is an irreducible GF(t)-representation. [12, Th. 15.11 and Th. 15.10] now imply 

that n~ I K I . But by assumption n  'lgl, a contradiction. Therefore K is abelian. 

As an immediate corollary of Lemma 8 we have Lemma 9. 

LEMMA 9. Let K be a subgroup of GL(n, 3), n >= 3, such that if p e re(K) 

then p > n. Then K is abelian. 

LEMMA 10. Let G = G~G~,. Assume that G~ ~ 1 is abelian and that 

Ic=l>lo=,l. Then O,(G) ~ 1. 

PROOF. By assumption G~ tq G~ # 1 for all x s G. Since G, is abelian, Herzog 

in [9, Th. 1] implies that there exists x s G such that O,(G) = G,t~ G~ ~ 1. 

As an immediate corollary of Lemma 10 we obtain Lemma 11. 
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LEM.VIA 11. I f  K is an abelian sub#roup of GL(n,q) ,  and /f(IKI, q) = 1, 

then I KI < qn, 
PROOF. Let R be the group of order qn such that K ~ Aut(R). Embed K and 

R in the natural manner in their semi-direct product K R .  Clearly R . ~  K R .  If 

I K i> qn then Lemma 10 implies that there exists a nontrivial element k e K 

such that k ~ O~(K)(KR). Hence k ~ CKR(R), a contradiction. Therefore I K [ < q~. 

We conclude with the trivial lemma. 

LEMMA 12. Let G be of order [ G [ = 2m3"p~ ' . . .  p~ .  Define rr,, = {PJPz > m} 

and ~ = {PJPi > n}. Assume that (i) k > n - 2  and n > 6 or (ii) k >  m - 2  

and m > 4. Then Ico l > 3 ~ or > 2",  respectively. 

The proof is by induction on n and m. 

3. Some properties of groups belonging to 0 

For any group G let m(G) denote the minimal number of generators of G. 

Define ms(C) = max re(U) where U ranges over all the subgroups of C. Define 

mA(G) = max re(A) where A ranges over all the abelian normal subgroups of C. 

If P is a p-group, m,(P) < n, and K is a p'-subgroup of Aut(P), it is known that 

K c GL(n,p) .  

We need the following preliminary result. 

PROPOSITION 13. Let C ~0  be a simple group. Set m z = m(O2(C3,))  and set 

m a = re(On(G2,)). Assume that p = 2 or 3 and that 

(I G ], p~(pmp _ 1) (prop-1 _ 1) . . . . .  ( p -  1)) = 2~3Br r 

where s, ~, fl and ~ are non negative integers and r is a prime. I f  r = 5, 7, 13 

or 17, assume also that G, is cyclic. Then C is simple of  prime order. 

PROOF. Assume that G is a nonabelian simple group. Lemma 7 implies then 

that Oz,(G3,) = Oa,(G:,) = 1. 

Since G 2, and Go, are solvable (Lemma 6), Hall-Higman [Lem. 1.2.3] implies 

that CG3,(O2(G3,)) = Z(O2(G3,))  and that C~,(03(G2,)) - -Z(Oa(G2,)) .  Set 

N = N~,,/(Oz(Ga,)) and set C = CG~, (02 (C3,)). Then N / C  = Go,/Z(O2(G3,)) 

is isomorphic to a subgroup of Aut(O2(Ca,)). [13, Th. 7.3.11] implies that 

[N/C[/1Aut(02(C3"))l/2~ rio ~ J ~ , - ~ (  2 ~ ' - j  - 1), where k is an integer. 

By assumption IN I -- I I -- Therefore I c l  = 2~3 ~r r. Burnside's 
p~qb theorem yields that 0r > 1. Thompson's theorem on minimal simple 

groups implies that r must be either 5, 7, 13 or 17. Hence, by assumption, 

G, is cyclic. From Leon's theorem [11] and the recent results of Leon and Wales 
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we obtain that G is one of the following: L2(q) with q = 5,7, 8,9 or 17, L3(3), 

U4(2) or U3(3 ) . In every case G does not have both G2, and G3,, a contradiction. 

Therefore G is simple of prime order. The second part of this proposition 

for p = 3, is proved similarly. 

PROPOSITION 14. Let G ~ 0 satisfy one of the following: 

O) G 2, is 3-nilpotent. 

(ii) G a, is 2-nilpotent. 

(iii) G 2 is abelian. 

Then G is solvable. 

PROOF. Let G be a minimal counterexample. (i) Let N be a proper nontrivial 

normal subgroup of  G. Then by induction N and G/N are solvable, a contra- 

diction. Hence G is simple. Lemma 7 then implies that 03,(G2, ) -- 1. As G 2, is 

3-nilpotent, G 2, is a 3-group and G is solvable by Burnside's theorem, a contra- 

diction. (ii) The proof of this part is similar. (iii) Clearly, by induction, G is 

simple. By Walter's theorem [I4], [15], and [16] we obtain that G ~ 0, a contra- 

diction. Therefore G is solvable. 

PRol, osnaon 15. Let G~O satisfy one of the following: 

(i) m~(G2) < 4. 

(ii) m~(G3) < 4. 

(iii) mR(G3) < 2. 

Then G is solvable. 

In particular if [G 2[=< 2 s or [Ga[ < 3 4 and G~O, then G is solvable. 

PROOF. Let G be a minimal counterexample. 

(i) By induction G is a non-abelian simple group. From Lemma 7 and Hall- 

Higman [Lem. 1.2.3] we obtain: 

[ = [ k I GL(4, 2)[ 

for some k. Therefore one of the following holds: 

(1) [G3, I = 1. 

(2) [ Ga'I = 2". 

(3)  la ,l = 2 " ' 7 .  

(4) IG ,l = 2 " . 5 ,  
(5) [Ga,[ = 2 ~ ' 5 - 7 .  

Clearly ~ > 2, by Proposition 14 (iii). By Proposition 13 we have only ease (5). 

Since Ca, is solvable, G has an Stsm-subgrou p Gts,7 ~ . Since 
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Gts.7~Z(O2(Ga,))/Z(Oz(G3,)) ~ Aut(Oz(G3,)) 

we obtain that Gts,7 ~ ~ GL(4, 2). But Satz 1-27, (7.3), Chap. II] implies that GL(4, 2) 

does not contain subgroups of order 5,7, a contradiction, and (i) is proved. 

(ii) By induction, G is simple, and m~(G3) < 4. In particular m = m(Oa(G2,)) 
< 4. As in the proof of (i), it follows that G 2'/Z(O3(G 2,)) is isomorphic to a sub- 

group of Aut(Oa(G2.)) and its order divides 3k I GL(m, 3) I for some k. Therefore 

one of the following holds: 

(1) IG21 = 1 

(2) [G2,[ = 3  ~. 

(3) IG2,1 = 3 ~- 13. 

(4) I G2,[ = 3 ~" 5. 

(5) IG2,1 = 3 ~ ' 5 " 1 3 .  

Since G a, is solvable, we obtain in Case 5 that 

G~5.1a} ~ GL(4,3). 

By Proposition 13 we have that [G2, I = 3~" 5 . 1 3 .  But Satz 1'10, (7.3), Chap. II] 

implies that GL(4,3) does not satisfy E{513} , a contradiction. Therefore G is 

solvable. 

(iii) If m~t(G3) < 2 then Thompson's theorem (Satz 1-10, (12.3), Chap. III]) 

implies that ms(G3) < 3. Therefore G is solvable by part (ii). 

If  I Gzl < 25 then G 2 is abelian or ms(G2) ~ 4. Proposition 15(i) and Propo- 

sition 14(iii) then imply that G is solvable. 

4. Proofs of the theorems 

PROOF OF THEOREM 1. Let G be a minimal counterexample. Lemma 6 implies 

that 2,3/1  I. Burnside's pOqb theorem implies that _>-3. Lemma 6 

implies that G2, and G3, are solvable. Burnside's paqb theorem implies that 

Gt2,3 ~ is solvable. Hence I7, Th. 6.4.4] implies that G is solvable. 

PROOV OF TI~EOREM 2. (i) If G is a nonabelian simple group, then Lemma 7 

implies that 03,(G2,)= 1. From Hall-Higman 1'Lem. 1.2.3] we obtain that 

N~2,(O3(G2,))/Cc2,(O3(Gz.)) = G2./Z(O3(G2.)) ~ Aut(O3(G2,)). Now Lemma 9 

implies that G,~" Z(Oa(G2,))/Z(Oa(G2,) ~ GL(n, 3) is an abelian subgroup if n > 3 

Therefore G~ is an abelian subgroup if n > 3. By definition, 02(Gz.) = 1 and G 2, 
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is of odd order. Let A be an abelian subgroup of G 2, of maximal order. By 

assumption d(Ga) < [ G~ 1, therefore if n > 3 then there exists p ~ n, p a prime, 

such that p/[ A] and p > 5. [1, Th. 1] then imlpies that 1 c Op(A) ~ Op(G2,) = 1 

a contradiction. Hence n < 2. Proposition 15 then implies that G is not a non- 

abelian simple group, proving (i). 

(ii) Let A be an abelian subgroup of G2. of maximal order. By assumption 

d(Ga) < d(Gp) for some p > 3. Therefore there exists q ~/z(G 2,), q > 5 a prime, 

such that q/] A 1. [1, Th. 1] implies that 1 ~ Oo(A) c Oq(G2,). But Oq(G2,) =1 
by Lemma 7, a contradiction, proving (ii). 

(iii) Burnside's theorem [3] implies that Op,(Gc3.p,~ ) ~ 1. Hence G is not a 

nonabelian simple group by Lemma 7. 

PROOF OF COROLLARY 3. If  n < 4 then Proposition 15 implies that G is solvable. 

Define ~n = {Pi/P, > n}. If  n > 6, Lemma 12 implies that 3 n < [G~. [. Therefore 

d(Ga) < [ G,. [. From Theorem 2(i) we obtain that G is not a nonabelian simple 

group. If n = 5 then n(G) ={2, 3, 5, 11, 13} since [G2,/Z(Oa(G2,))[/3~1GL(5, 3) I 
and n(GL(5,3))=  {2,3,5,11,13).  As above G t l x . l a ~  GL(5,3). But GL(5,3) 

does not contain a {11, 13}-subgroup, completing the proof. 

PROOF OF THEOREM 4. If Op,(G) = 1, then C~(Op~(G)) = Z(Op,(G)). There- 

fore G/Z(Op,(G)) Z Aut(Op~(G)). In particular, G~ ~ GL(el, Pl). From Lemma 8 

we obtain that G, is abelian. Therefore ]G, [ < p~' by Lemma 11, a contradiction. 

Therefore Opt(G) r 1. 

PROOF OF COROLLARY 5. If m < 5 then Proposition 15 implies that G is sol- 

vable. Hence m > 6. Define nm = {pJp, > m}. Lemma 12 implies that [G~., 1> 2". 

Lemma 6 and Theorem 4 imply that 03,(G2,) r 1. By Lemma 7, G is not a 

nonabelian simple group. 
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